# The relationships of the enigmatic gastropod Tritonoharpa (Neogastropoda): New data on early neogastropod evolution? 

Maria Vittoria Modica<br>Dipartimento di Biologia Animale e dell'Uomo<br>"La Sapienza" Rome University<br>Viale dell'Università 32<br>I-00185 Roma, ITALY<br>mariavittoria.modica@uniromal.it

Alisa R. Kosyan<br>A.N. Severtsov Institute of Ecology and Evolution<br>Russian Academy of Sciences 33 Leninski Prospekt<br>Moscow 119071, RUSSIA<br>kosalisa@rambler.m

Marco Oliverio<br>Dipartimento di Biologia Animale e dell Uomo<br>"La Sapienza" Rome University<br>Viale dell Università 32<br>1-00185 Roma, ITALY<br>marco.oliverio@miromal.it


#### Abstract

In this paper, the relationships of Tritonoharpa Dall, 190 , within Neogastropoda are discussed. Tritonoharpa is indeed similar to Colubraria in the morphology of its head-foot, pallial complex, reproductive and excretory systems, in the presence of an extremely long and coiled proboscis, and a very large stomach. However, it differs from Colubraria in the rest of its foregut anatomy, revealing a cancellariid affinity, and a typical nematoglossan radula. The molecular data confirms Beu and Maxwell's placement of Tritonoharpa in the Cancellariidae, close to Plesiotriton. It is also suggested that cancellariids may be the sister-group to the rest of neogastropods. Tritonoharpa has a rather large and well developed midgut gland, resembling the gland of Leiblein. As previously studied cancellarioideans have been shown to lack a well differentiated gland of Leiblein, the present study raises some interesting questions about the evolution of the foregut in Neogastropoda. In fact, if this glandular structure were confirmed as a trme homologne of the gland of Leiblein, and the cancellarioideans proved to be the sister group to the remaining neogastropods, the possession of the gland should be considered a synapomorply of the Neogastropoda.


Additional keyuords: Anatomy, phylogeny, molecular systematics, Neogastropoda, Cancellariidae

## INTRODUCTION

Tritonoharpa antiqnata (Hinds in Reeve, 1844) belongs to a small group of 19 Recent speeies, most occurring in the tropieal Indo-West Paeific (Ben and Maxwell, 1987). These species had previously been referred to a Colubraria-like group, together with members of at least four families (Beu and Maxwell, 1987). Elongate and varieate shells, typical of Colubraria, have evolved through convergence several times in the families Ranellidae, Muricidae, Buccinidae, and Cancellariidae. A number of genera with columellar plaits and a nematoglossan radula, morphologically similar to Plesiotriton, Fisher, 1884, were placed in the Cancellarioidea. Among those, the genus Tritono-
harpa Dall, 1908 (type species by original designation, Tritonoharpa vexillata Dall, 1908, Recent, from westem America and the Galapagos Islands) was distinguished from Plesiotriton only by the absenee of columellar plaits and the absence of radula (Beu and Maxwell, 1987).

Information on the anatomy of Cancellariidae is available (Ilarasewych and Petit, 1952; 1954; 1986), based on representatives of the subfamilies Cancellariinae and Admetinae. The anatomy and phylogenetic relationships of the Plesiotritoninae to the other cancellariids are still unknown.

Herein we deseribe the foregnt anatomy of Tritonoharpa antiquata (Figure 18) and compare it with anatomical data already available for other cancellariids. A molecular dataset, based on two mitochondrial markers ( 12 S and 16 S rDNA) was used to construct a moleeular plyylogenetic framework for the systematics of the Plesiotritoninae.

## MATERIALS AND METHODS

Taion Sampling and Specimen Collection: The material for the present study was collected during field work and expeditions to the West Pacifie (Pangla 2004, Philippines, and Santo 2006, Vanuatu, organized by the Muséum national d’Itistoire naturelle, Paris), Panama (Neogastropod Workshop 2006 at the Smithsonian Tropical Research Institution, Panama), the Mediterranean Sea, and other localities, and supplemented by specimens provided by Museums and eolleagues (see Table I for details). Vouchers are stored at BAU (Department of Animal and Human Biology, Rome), MNIIN (Muséum national d'Histoire naturelle, Paris), NMSA (Natal Mnseum, Pietermaritzburg).

Representatives of 21 additional neogastropods, ineluding representatives of 13 families were sequenced to provide a phylogenetie framework for the relationships of Tritonoharpa to other cancellariids and within the Neogastropoda. The cypraeid Cypraca cervinelta Kiener, 1843 has been chosen as an ontgroup (see Table 2 for details).
Table 1. Species included in the molecular analysis, with collecting data, voucher numbers, length of the 12 S and 16 S sequences, and EMBL accession numbers. BAU, Department of Animal and Human Biology, Rome; MNHN, Muséum National d'Histoire Naturelle, Paris; NMSA, Natal Museum, Pietermaritzburg; and EMBL, The European Molecular Biology Laboratory, Heidelberg.

| Family | Species | Locality | Voucher Number | 12S |  | 16 S |  | References |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | EMBL | bp | EMBL | bp |  |
| Cypraeidae | Cypraea cervinetta Kiener, 1843 | Venado (Panama), $8.89^{\circ} \mathrm{N}$, $79.59^{\circ} \mathrm{W}$, intertidal | BAU00799 | FM999072 | 521 | FM999103 | 492 | Oliverio and Modica, in press |
| Cancellariidae | Cancellaria cancellata Linné, 1767 | Off Malaga (Spain), 40-50 m | BAU00224 | FM999074 | 541 | FM999105 | 652 | Oliverio and Modica, in press |
| Cancellariidae | Cancellaria cooperi Gabb, 1865 | Off La Jolla <br> (California, USA), 40 m | $\begin{gathered} \text { MNHN IM-2009-4611 } \\ \text { BAU00797 } \end{gathered}$ | FM999073 | 537 | FM999104 | 616 | Oliverio and Modica, in press |
| Cancellariidae | Tritonoharpa antiquata (Hinds in Reeve, 1844) | Mactan Is. (Philippines), $10.32^{\circ} \mathrm{N}$, $124.03^{\circ} \mathrm{E}, 40-120 \mathrm{~m}$, tangle nets, 15 May 2006 | BAU00270 | FN392228 | 521 | FN392229 | 489 | This work |
| Cancellariidae | Plesiotriton vivus Habe and Okutani, 1981 | Bohol/Sulu sea sill (Philippines), panglat 2005, st CP2359, $8.83^{\circ}$ N $123.58^{\circ}$ E, $437-476 \mathrm{~m}$ | MNHN32123 | FM999075 | 523 | FM999106 | 656 | Oliverio and Modica, in press |
| Conidae | Comus textile Linnaeus, 1758 | Philippines | - | DQ862058 | 535 | DQ862058 | 609 | Bandyopadhyay et al., 2007 |
| Turridae | Lophiotoma cerithiformis Powell, 1964 | Philippines | - | DQ284754 | 532 | DQ284754 | 625 | Bandyopadhyay et al., 2006 |
| Muricidae | Nucella lapillus <br> Linnaeus, 1758 | Portobello (UK), $55.95^{\circ} \mathrm{N}$, $3.10^{\circ} \mathrm{W}$, intertidal | $\begin{gathered} \text { MNHN IM-2009-4617 } \\ \text { BAU00187 } \end{gathered}$ | FM999088 | 527 | FM999119 | 679 | Oliverio and Modica, in press |
| Muricidae | Cronia sp. 1 | Tolo Channel, Hong Kong, $22.45^{\circ} \mathrm{N}, 114.26^{\circ} \mathrm{E}$, 1 m depth | $\begin{gathered} \text { MNHN IM-2009-5118 } \\ \text { BAU00619 } \end{gathered}$ | FN391982 | 521 | FM999120 | 669 | Oliverio and Modica, in press |
| Muricidae | Stramonita haemastoma (Linné, 1767) | S. Marinella (Italy), $42.0^{\circ} 3 \mathrm{~N}$, $11.90^{\circ}$ E, intertidal | BAU00696 | FM999090 | 525 | FM999121 | 661 | Oliverio and Modica, in press |
| Muricidae | Drupella cornus Röding, 1798 | Panglao Is., Catarman (Philippines), panglao 2004, st. R18, $9.60^{\circ} \mathrm{N}$, $123.86^{\circ}$ E, $2-46 \mathrm{~m}$ | $\begin{gathered} \text { MNHN IM-2009-4601 } \\ \text { BAU00192 } \end{gathered}$ | FM999091 | 521 | FM999122 | 657 | Oliverio and Modica, in press |
| Buccinulidae | Paraeuthria plumbea <br> (Philippi, 1841) | Ushuaia (Argentina), $54.78^{\circ} \mathrm{S}$, $68.23^{\circ} \mathrm{W}$, intertidal | $\begin{gathered} \text { MNHN IM-2009-4613 } \\ \text { BAU00697 } \end{gathered}$ | FM999095 | 530 | FM999126 | 637 | Oliverio and Modica, in press |
| Buccinidae | Neobuccinum eatoni (Smith, 1875) | Terra Nova Bay (Antarctic), $74.69^{\circ} \mathrm{S}, 164.1^{\circ} 2 \mathrm{E}$ | $\begin{gathered} \text { MNHN IM-2009-4614 } \\ \text { BAU00785 } \end{gathered}$ | FM999096 | 535 | FM999127 | 657 | Oliverio and Modica, in press |
| Nassariidae | Ilyanassa obsoleta (Say, 1822) | Not available |  | DQ238598 | 535 | DQ238598 | 563 | Simison et al., 2006 |
| Nassariidae | Nassarius pagodus (Reeve, 1844) | Las Perlas Is. (Panama), $8.74^{\circ} \mathrm{N}, 79.20^{\circ} \mathrm{W}, 50 \mathrm{~m}$ | MNHN IM-2009-4620 BAU00237 | FM999094 | 528 | FM999125 | 659 | Oliverio and Modica, in press |
| Melongenidae | Melongena patula (Broderip and Sowerby, 1829) | Venado (Panama), $8.89^{\circ} \mathrm{N}$, $79.59^{\circ} \mathrm{W}$, intertidal | $\begin{gathered} \text { MNHN IM-2009-4621 } \\ \text { BAU00794 } \end{gathered}$ | FM999093 | 533 | FM999124 | 671 | Oliverio and Modica, in press |
| Melongenidae | Volema myristica (Röding, 1798) | Panglao Is., Sungcolan (Philippines) panglao 2004, st, M11, $9.64^{\circ} \mathrm{N}$, $123.83^{\circ} \mathrm{E}, 0-3 \mathrm{~m}$ | $\begin{gathered} \text { MNHN IM-2009-4602 } \\ \text { BAU00225 } \end{gathered}$ | FM999091 | 534 | FM999123 | 662 | Oliverio and Modica, in press |

$\begin{array}{ccccccc}\begin{array}{c}\text { MNHN IM-2009-4616 } \\ \text { BAU00278 }\end{array} & \text { FM999083 } & 524 & \text { FM999114 } 672 & \begin{array}{c}\text { Oliverio and Modica, } \\ \text { in press }\end{array} \\ \begin{array}{c}\text { MNHN IM-2009-4615 } \\ \text { BAU00241 }\end{array} & \text { FM999052 } & 534 & \text { FM999113 } & 665 & \begin{array}{c}\text { Oliverio and Modica, } \\ \text { in press }\end{array} \\ \text { NMSA-E5279 }\end{array} \quad$ FM999054 532 FM999115 $\left.489 \begin{array}{c}\text { Oliverio and Modica, } \\ \text { in press }\end{array}\right]$ Las Perlas (Panama), $8.53^{\circ} \mathrm{N}$,
$79.09^{\circ} \mathrm{W}, 20-22 \mathrm{~m}$
Venado (Panama), $8.89^{\circ} \mathrm{N}$,
$79.59^{\circ} \mathrm{W}$, intertidal
SW of Mossel Bay, Agulhas Bank,
Western Cape (South Africa),
81 m
Panglao Is.,Tangibilaran-Panglao
Channel (Philippines), Pavglao-
2004, st. R67, $9.64^{\circ} \mathrm{N}, 123.86^{\circ}$
$\mathrm{E}, 3.0-3.5 \mathrm{~m}$
Bohol/Sulu Seas sill (Philippines),
Panglao 2005 St. CP235s,
8.57 N,
123.62 $\mathrm{E}, 569-583 \mathrm{~m}$
Bellona West (New Caledonia),
Coral Sea, Ebisco, st. CP2556, $^{21.1^{\circ} \mathrm{S}, 158.53^{\circ} \mathrm{E}, 741-791 \mathrm{~m}}$

| Olividae | Oliva spicata <br> (Röding, 1798) <br> Olivella volutella <br> (Lamarck, 1811) |
| :--- | :---: |
| PseudolividaeSyluanocochlis <br> ancilla <br> (Hanley, 1859) |  |
| CostellariidaeVexillum plicarium <br> (Linnaeus, 1758) |  |
| Volutomitridae Microvoluta sp. |  |
| PtychatractidaeLatiromitra sp. |  |






| Fimaly | species | Lucdicy | Vinuclur Nomlmar | 125 |  | 1 （i¢ |  | Ridurenes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | E．M13I． | 1 p | I：\131． | $1 \nu_{1}$ |  |
| Cspraculies | Cypram rertintth <br> Kirumer，184．3 | Vomala（Pomama），\＆ 85 N ， T9．59 WV，introndal | Batootem |  | 521 |  | ＋32 |  <br> Nusdical．m press |
| Ciancerlamuliw | Camo llata chacr：lhon <br> Lumi，lifit | Off \l．1liga（Spani），10－50 m |  | F，\リ9\％ | 5.11 | FVlogelen | 6.52 |  <br> オuntan mors |
| C．mectlııйı• | Cancallurm compen <br> C．al3ly，IS 525 | Off lat folla <br>  | WNHN INI．2009．4611 <br>  | 15.89506 .3 | 533 | F\ए49\％10．］ | tili |  <br> Dwhe．s．in proces |
| Cancrlaıniul．ı． | Tistomshaтm untignalo <br> （Hinds in Reewe，lisil） | Mactimls（Plolippomev），10．32＂ V ． 124．03 $\mathbf{B}_{4}$ 4（ 15 ：1at 20 Kh | 13AUMO250 | FN392924 | 521 |  | 459 | 7＇lus wark |
| Cancellamulies | Pbualmon I it as <br> Itialy＂：and <br> Ohnit．．．n．，1！381 |  livi．1．w 2005 ，st Cle2359． <br>  | \1NIIN32123 | 178199095 | 523 | F\リリリリロォ | 6.54 | （）havers and <br> Slodican m |
| Cimiolil |  | 19ılıринеら | － | DRS6205s | 535 | Dutireuss | fiol） | Banulvopactlivas Cl．，2007 |
| Tırruas | Lephutunat crrilhyintoms <br> P（sw 10 ，196－1 | Plılipuers | －${ }^{\text {a }}$ | DQ24．155．1 | 532 | DQ2 5.15 .54 | 万22 5 |  14．11．24 216 |
| Slaricald． |  <br> Limus．ばル．175 |  3．11）W＇，intertulis | $\begin{gathered} \text { ANIIN IA1-2009. IfIT } \\ \text { BAU001.57 } \end{gathered}$ | F＇IJ！jums | 525 | F゙入！！！911リ | （5．） |  <br>  |
| \lıricid．o． | Cronin ¢ 1 | ```Taln) ('lommel. Ilmgg Kong. 20.5 N.11424 E. l m``` | SINHIN IAI－2URY． 511 S B． 4101019 | FV301！ 52 | 521 |  | fiil） | （ ）lisynu：atul <br> Sludicen maners |
| Mnrıcidin． |  <br> （Lime：1767） | 4 Ma！ 11 ！er E，intortulal |  | FMsegshe | 525 | F\1090121 | 661 | （ ）ncermand <br> Malicar．in proms |
| Sauricillin＊ | Druputhr гити＂， Rouling．ligs | P．ugglas 1s．，Callarman（Plılipplan＂） <br>  123 Sf＇E，2－ 16 |  | FNO！ | 521 | FM！リ4122 | 651 | （）hsvono and Vonlaci．In pross |
| Buccimulidiu＇ |  <br>  | Usludin（Argentum：．54．7．is． 5 ， $6523^{\prime \prime}$ W，intormial | SNHN IDI－2H09－\＃313 BAUOOGT | FND！M0．${ }^{\text {a }}$ | 530 |  | 6,37 |  <br> Sludicio，in preses |
| fuccematie | Neoburtimm camms （bmilh，1sis） |  T． 1 （i）S． $1641^{\circ} 2 \mathrm{l}$ |  | F Cl 9410196 | 535 |  | 651 | （ Hiw rima <br> Ameleat in press |
| Nomsamidur | Ilyanotra obivaletn <br> （S．1）：1820） | Not imalable |  | DQ234514 | 53.3 | D02 34505 | 563 | Cimiman et al ，2003 |
| Nassimula | Nassurins pughtus <br>  | Lais Prales Is（Pintamia）， <br> \＆T．小＂N，T9，时 W， 50 m | $\begin{gathered} \text { SISHN IN-2069-1620 } \\ \text { BAU6023 } \end{gathered}$ | EDIgYicyl | 52.6 | F．\9\％9上25 | 65！） | Ohsırion and <br> Madica，in proses |
| Nelungermine | Mhomis an patulu （Bonderap and Sowrolv：1829） |  59．54 11，intertidial | $\begin{gathered} \triangle I N I I N ~ I M-3001-162] \\ B A[160-.94 \end{gathered}$ | $\mathrm{FN} \times 1910403$ | 533 |  | 851 | Oliswrna and <br> Monlica．in preses |
| Melongrmare | Vohma muration （Rıulong，IT9s） | Pamgla ls．，Smerealim（1＇hlippım 1inNe．1．t12004，4t．M11 9．64＂N． $12343^{\circ}$ E， $0-311$ |  | FSlegenki | 534 |  | 682 | Ohsems，and <br> dludied．mporess |


| Olividac | Olicu spisuln <br> （Radmg，179．s） | Lats Pertins（Pamimai），8．5．3 N T9（0）WV，20－22 m |  | F\＄10）90\％3 | 524 | FAT！ 19114 | 672 |  in press |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ohwith colusella <br> （Lamourck，1S11） | Vemulo（ $\mathrm{P}^{\prime}$ ，mama），\＆ $99^{\circ} \mathrm{N}$ 7959 W．intertilal | $\begin{gathered} \text { AINIIS IS1-2009-461.5 } \\ \text { BAU002 } 41 \end{gathered}$ | FSIGY4042 | 534 |  | 665 | （Olispmo：nul Monlicat． in press |
| 1＇sendulivil．ı． | Sylemonnchlis macilh （H1ansy：185：） | SW of Mossel Buy：Agnllas Bank， Wístern Cape（smoth Aricio）． Sl 11 | V．IISA－E527！ | F．199904－1 | 532 | 1＇，199！ 115 | 489 | Olımャワ and Divdica． in press |
| Costellariidare | Vexillum plecarium <br> （I．innaens，155s） | Panglio Is．，Tanglailaram－Panglao <br> Clammel（Philippmes），Pancasur 2001，st RG7，964 N，123．460 E． $30-3.5 \mathrm{~m}$ | $\begin{gathered} \text { MAIIN ISI-200リ-IG6:3 } \\ \text { B.AUOU20 } \end{gathered}$ | Fsomens | 535 | F．3ty9112 | 48.5 | Oliverio and Morlica， in press |
| Vinhtomutridie | Mcrıu＇nhtasp |  ```Pawil_tal 2005 St (:P2355. 5.5% N 123.62 E, 569-5s3 m``` | MNIIN IN－2009－16it） BגU0069！ | FM99！080 | 525 | FM999111 | 651 | Oliverios and Madica， in press |
| Ptychatractidae | Latiromatriz sp | Bellumal West（New Calledemin）， Coral Sea，Eums，st CP2556， 21．1＊S． $158.53^{\circ}$ E，741－791 m | MNIIN IAI－20以 4610 BAU00612 | FNo9gos 5 | 52.5 | FNeysilic | 653 | Oliverio and Mondica， in press |

 whorl ：al，iperture lengin

| SpecimenNoncher 1D | localify | 14 | II | 11 | ：1 | S\ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BaU00206s | Aligusy Is（Philippunes），8． $75^{\circ} \mathrm{N}, 123.23^{\circ} \mathrm{E}$ ． 30－150 m，tangle nets，May 2016 | 15.7 | 54 | 1）． 4 | 6.5 | male | dissected |
| BAU0026！ | Aliguay is（Philippines）， $8.75^{\circ} \mathrm{N}, 123.23^{\circ} \mathrm{E}$ ． $3(1-150 \mathrm{~m}$ ，tangle nets，Dlay 2006 | 18.5 | 6.1 | 49 | 7.2 | female | dissucted |
| B．4U002T0 | Naclan is \｛1 ${ }^{\circ}$ hilippimes）， $10.32^{\circ} \mathrm{N}, 12103^{\circ} \mathrm{E}$ ， $40-120 \mathrm{~m}$ ，timgle nets， 15 Nm 2006 | 14.1 | 46 | 8.4 | 6 | lemale | DNA |
| B．LUD0301 | Santo is．（Vamatu），sworn 200G，stı．DRT4，SE Matewuln， $15.35^{\circ}$ S， 167.19 E，fom（J．Peloree leg．） | 15.3 | 5.1 | ！） 1 | 6.6 | female | dissmed |
| BAU00362 | Santo ls．（Vannatu），Sivm 2006 sa DRTA．SE Alatewnln， $15.34^{\circ} \mathrm{S}, 167.19^{\circ} \mathrm{E} .6 \mathrm{~m}$（ $\mathrm{\lambda I}$ ．Oliverio leg） | 20 | 6.5 | 10.3 | 8.1 | female | sectimuct |
| BAU00．30．3 | Simeto，Vimmatu，Susito 900 sta．DR55，Padikulo Bay， 15．14．S． $166^{-.25} \mathrm{EE}, 3-7 \mathrm{~m}$（］Pelorce leg） | 19.1 | 6.3 | 10.1 | 7.3 | female | dissueced |

In the Results and the Discrussion sections, we have used collective taxonomic names within quotation marks (e.g.: 'volutoid', 'buccinoid') as descriptive terms in the traditional context of the names (e.g., Ponder, 1974), but without attributing a specific taxonomic rank to them.

Anatomical Methods: Four specimens of Tritonoharpa antiquata were manually dissected (two from the Philippines BAU00265-9 and two from Vanuatu BAU00301, BAU00303). One female (from Vamatu, BAU00302) was embedded in paraffin and serially sectioned at a thickness of $7 \mu \mathrm{~m}$. The sections were stained either with hematoxylin and alcoholic eosin, or with hematoxylin, eosin and Alcian Blue. Radulae were cleaned in liquid bleach [ NaOCl ], air-dried, coated with gold, and examined using a JEOL scanning electron microscope.

DnA Extraction, PCR, Cloning, and Sequencing: Total DNA was extracted following a standard Phenol/ Chloroform/Ethanol protocol (llillis et al., 1990) with slight modification as previously described by Oliverio and Mariottini (2001). The QIAGEN QiAmp Extraction Kit was used for extraction of DNA from difficult samples, according to manufacturer's instructions.

Partial sequences of two mitochondrial genes encoding ribosomal DNA were PCR amplified. A region of the gene encorling 16 S rDNA encompassing the domains IV and $V$ (Gutell and Fox, 1988) was amplified using primers 16SA ( $5^{\prime}$-CGCCTGTTTATCAAAAACAT- $3^{\prime}$ ) (Palumbi et al., 1991) and 16SH (5'-CCGGTCTGAACTCAGATCAC-3') (Espiritu et al., 2001) or CGLeuR (5'-TATTTAGGGCT TAAACCTAATGCAC-3') (Hayashi, 2005). A portion of the gene encoding 12 S rDNA corresponding to the domains II and III was amplified with primers $12 \mathrm{SI}\left(5^{\prime}-\mathrm{TG}\right.$ CCAGCAGCCGCGGTTA- $3^{\prime}$ ) and 12SI1I ( $5^{\prime}$-GAGC GACGGGCGRTTWGTAC-3') (Oliverio and Mariottini, 2001). Amplification conditions were as follows (30-35 cycles): $94^{\circ} \mathrm{C}$ for 30 scconds, $45-50^{\circ} \mathrm{C}$ for 30 seconds, $72^{\circ} \mathrm{C}$ for 60 scconds. When a single band was obtained, the PCR product was purified using the Exo-Sap enzymatic method. In cases of persistent aspecific amplification, the PCR product was ligated into the pGEM-T-Easy vector according to manufacturer's (Promega) instructions and then nsed to chemically transform E. coli JM109 cells. Transformed colonies were selected by blue-white selection and clones containing the correct insert size were PCR-screened. Then, they were prrificd using the SIGMA miniprep kit. Purified products (amplicons and clones) were then double-strand sequenced with BigDye v. 2.0 (Applied Binsystems, Foster City, CA, USA) using the PCR primers and sequences visualized on automatic sequencer. Sequencing was performed by Macrogen Inc. (Seoul, South Korea). Chromatograms were analysed using the Staden Package (Version-1.6.0, Staden et al., 1998, 2005 ). All sequences have been deposited at EMBL (The Enropean Molecilar Biology Laboratory, Heidelberg; see Table I for accession numbers).

Srounfce and Pirqogenetic Analysis: Scquences were aligned using Chustal X (Thompson et al., 1994; 1997)
using the defanlt settings, then edited manually. The aligned dataset is available from the authors upon request. Analyses of nucleotide sequences were performed using Mega3.1 (Kumar et al., 2004). The uncorrected 'p' and the ML distances between the sequences werc calculated. To test for the presence of mutational saturation, uncorrected ' $p$ ' painvise distances, transition (Ts) and transversion ( $\mathrm{Tv}_{\mathrm{v}}$ ) were plotted against the estimated ML distance (Nichols, 2005; Philippe et al., 1994) in DAMBE (Xia and Xie, 2001; Xia, 2000). The $\chi^{2}$ test implemented in PAUP* v. 4 b 10 (Swofford, 2002) was used to test for base composition homogeneity of the aligned sequence data. The aligncd sequences werc analysed under the assumptions of Maximum Parsimony, Maximum Likelihood (ML, Felsenstein, 1981) and with a Bayesian approach (Rannala and Yang, 1996), using the packages PAUP* v. 4b10 (Swofford, 2002), Modeltest v. 3.7 (Posada and Crandall, 1998), MrModeltest v. 2.2 (Nylander, 2004), MrBayes v. 3.1.2 (Ronquist and Huelsenbeck, 2003), and Treefinder, June 2007 version (Jobb et al., 2004; Jobb, 2007). Each locus (12S and 16S) was first analysed separately. A partition homogeneity test (Mickevich and Farris, 1981; Farris et al., 1995a, 1995b; Cumningham, 1997), implemented as ILD test in PAUP*, was performed before combining the two loci (but see Darlu and Lecointre, 2002, and Yoder et al., 2001 for criticisms on ILD's efficiency in determining data compatibility). The combincd dataset was analyzed by MP, and partitioned ML and Bayesian analyses. ML analyses were performed by Trecfinder, using for each partition the substitution models chosen after evaluation by Modeltest using the Akaike information criterion. Base frequencics, relative rates of the six substitution types and model parameters were estimated separately for each partition by the software during phylogenetic reconstruction. Confidence for the nodes was estimated in Trcefinder using 1000 bootstrap replicates and compared with the LR-ELW Edge Support (Expected Likelihood Weights on the Local Rearrangements: Strimmer and Rambaut, 2002; Jobb, 2007). A Bayesian analysis (BI) was performed to obtain posterior probabilities of branches using the softwarc MrBayes, which adopts the Markov Chain Monte Carlo method to sample from postcrior densities (Larget and Simon, 1999; Yang and Rannala, 1997). The substitution model used was estimated for each partition using the software MrModeltest. Base frequencies, the relative rates of the sir substitution types and model parameters werc estimated during the analysis, separately for each partition (using the command 'mnlink' in MrBayes). A four chain metrop-olis-coupled Montc Carlo analysis was run twice in parallel for $10^{6}$ gencrations, and trees were sampled every 1.000 generations, starting after a burn-in of 250,000 gencrations. Stationarity was considered to be reached when the average standard deviation of split frequencies shown in MrBayes was less than 0.01 (Ronquist and Huclsenbeck, 2003). Bayesian posterior probabilities ( BPP ) of a branch were estimated as the percentage of trees (after burn-in) which showed that specific node.

## RESULTS

## Anatomy of Tritonoharpa antiquata: External

 Morphology: Animal uniform cream in base color, with bright orange spots most frequently situated on surface of kidney and digestive gland (Figures 1-3). Foot (Figures 1-3, ft) partly contracted, with a deep propodial groove separating narrow propodium. Operculum absent in all specimens. Hcad small (Figure 4), on welldefined neck, with short, narrow, apparently nonretractable snout (sn) and pair of long, thick tentacles $(\mathbf{t})$, each with a large black eye (e) on outer side of a basal swelling. Penis (Figure 7, p) of male (spm. No. 2) rather large, flattened, slightly widening distally, with small rounded orifice (so) at right upper angle.Mantle: Mantle margin smooth (Figure 8). Siphon (s) short, muscular. Osphradium (os) occupying $1 / 3$ of mantle length, approximately $1 / 10$ of mantle width. Osphradium with broad axis, 2 equal rows of short lamellae. Ctenidium (ct) long, crescent-curved, slightly wider than osphradium, occupying almost entire mantle length. Females with broad capsular gland (cg) covering rectum. Female genital orifice (fo) small, slit-like, terminal. Area between ctenidium and capsular gland occupied by numerous high folds of hypobranchial gland (hg).

Digestive Sistem: Proboscis extremely long, narrow (Figure 6, pr), folded within body haemococl into $>10$ coils (Figure 13, pr). In histological sections, proboscis wall consisting of columnar epithelium with basal nuclei (Figure 12, ep), a layer of circular muscles (cml) and a thick inner layer of longitudinal fibers (lmo). Mouth opening large, terminal (Figure 6, m). Oral tube short, lined with thick cuticle (Figure 16, cte). Buccal mass short, thick (Figure 5, bm ), occupying $\sim 1 / 10$ proboscis length, consisting of buccal musculature and folded cartilages (Figures 9, 11, 15, ert). Buccal mass surrounded by well-developed, cuticularized, funnel-like jaw plate (Figures 9, 15, $16 \mathbf{j w}$, ctc), tubular anteriorly, expanded postcriorly into two small wings surrounding odontophore. Radula slightly shorter than odontophore (Figure 5, r), nematoglossin, consisting of a thin membrane and onc central longitudinal row of rachidian teeth (Figure 19). Each tooth long, narrow (length $>10 \times$ width), with three short cusps on distal end. Median cusp bearing vertical row of short secondary cusps (Figures 20, 21). Teeth closely set, distance between them approximately equal to their width.

Accessory salivary glands paired, strongly-coiled, thickwalled, tubular (Figure 5, asg), rumning parallel to buccal mass, tapering toward buccal tube, opening by two ducts (asd) into medial region of buccal cavity. Glands consisting of very thin layer of circular fibers and layer of tall columnar glandular epithelium with basal nuclei (Figure 16, asg). Lumen of gland filled with mucous secretion (staining blue with Alcian: Figure 16, asg). Proximal ends of accessory salivary glands fused together and connected to ventral part of proboscis wall by a strip of connective tissue (Figure 5, ent). Buccal mass attached to
bottom of buccal tube by multiple retractor muscles. Anterior esophagus thin-walled (Figure 5, aoe). Proboscis cavity containing thick proboscis nerves (Figure 5, n) and ducts of primary salivary glands.

Single proboscis retractor muscle rmming from base of proboscis to floor of body haemocoel (Figure 6, prr). Esophagus penetrating massive nerve ring (nr) then continuing ventrally. Spirally coiled valve of Leiblein (vl) situated within proboscis. Long midgut gland posterior to nerve ring, provisionally referred to as gland of Leiblein (Figure 6, gl), rumning along posterior part of esophagus. Gland well devcloped, easily recognized by its dark-brown color. Tissue of gland compact in histological sections, represented by glohmlar cells with large nuclei and multiple granules, indicating strong apocrine secretion (Figure 16, 17, gl). Globular cells with large nuclei situated along septa internally dividing gland into distinct lobes. Gland filled with vesicles containing multiple sccretion gramules. Duct of this gland not found. Anterior aorta thick, rumning parallel to gland of Leiblein after passing through nerve ring. Primary salivary glands paired, whitish, tightly fused (Figure 6, sg), situated posterior to gland of Leiblein. In histological sections (Figure 17, sg), primary salivary glands appear clearly tubular, consisting of thin outer layer of connective tissue, and thick layer of high colmmar epithelium, with cells having long necks and basal nuclei. Ducts of primary salivary glands (Figure 6, sd) thin, not passing through nerve ring, forming a loop, entering proboscis base parallel to esophagus. Ducts entering buccal mass posterior to ducts of accessory salivary gland.

Stomach long, narrow, situated beneath kidncy and digestive gland, spanning one whorl. Stomach imperfectly preserved, transversal folds on its walls could not be clearly recognized.

DNA Analysis: A total of 23 sequences were obtained for each of the two genes (including the ontgroup Cypraca cervinetta). The sequences in the trimmed alignment were 521-541 bp for 12S and 489-679 bp for 165 . A $\chi^{2}$ test of base homogeneity, uncorrected for phylogeny, indicated that base composition at each partition was not significantly different across all sites ( 16 S : $\mathrm{P}=1.000 ; 12 \mathrm{~S}: \mathrm{P}=0.999$ )

Mutational saturation plots (results not shown) displayed evidence of saturation for both 12 S and 16 S seqnences at the level of the ingroup-ontgroup comparisons.

A partition homogeneity test performed in PAUP* (Swofford, 2000) did not reveal significant incongmence between the 16 S and 12 S datasets ( P value $=0.65$ ).

The combined aligned dataset comprised 1.300 nucleotide positions (12S: 581; 16S: 719), with the aligmment of 301 positions considered uncertain, and thus excluded from subsequent analysis. Of the 999 included positions 536 were constant, 136 variable positions were parsimonyuninformative and 327 variable positions were parsimonyinformative.

The MP analyses of each partition and of the combined dataset, produced topologies with very few nodes

supported by bs $>50 \%$ (Figure 22). In all MP trecs, the Rachiglossa, the Toxoglossa, the Muricidae, and the Buccinidae emerged as polyphyletic. In the analysis of the combined dataset, Tritonoharpa + Plesiotriton and the Cancellaria spp. comprised a nematoglossan clade, sister to the Olividae. Only seven nodes received a bootstrap support $>90 \%$.
Model test 3.7 selected by AIC the following models of nucleotide evolution: the $\operatorname{TrN}+\mathrm{I}+\mathrm{G}$ for 12 S rDNA only and the TVM $+\mathbf{I}+\mathrm{G}$ (transversional model) for 16 S rDNA only. These models were adopted for ML analysis. MrModelTest 2.2 selected by AIC the GTR $+\mathrm{I}+\mathrm{G}$ substitution model both for 16 S rDNA and for 12 S rDNA; this model was used in the Bayesian analysis.
In the ML topology obtained for the concatened dataset (Figure 23), a sister-group relationship between Tritonoharpa and Plesiotriton was strongly supported ( $\mathrm{bs}=99$ and $\mathrm{BPP}=1$ ). The Plesiotritoninae emerged as the sister group of the other Cancellariidae included in our analysis (C. cooperi and C. cancellata), albeit without strong support ( $\mathrm{bs}=50$ and $\mathrm{BPP}=0.89$ ); the clade comprising all the nematoglossans (Cancellarioidea) was the sister-group of the remaining neogastropods (rachiglossans and toxoglossans). Toxoglossans (Conoidea) emerged as polyphyletic and basal to the stenoglossans. Within the rachiglossate group, a clade Olividae was basal ( $\mathrm{bs}=95$; not recovered in bayesian analysis), followed by a 'volutoid' clade ( $\mathrm{bs}=95$ and $\mathrm{BPP}=0.99$ ), comprising Volutomitridae (Microvoluta sp.) and Costellariidae (Vexillum sp.) plus Ptychatractidae (Latiromitra sp). A clade formed exclusively of Muricidae ( $\mathrm{bs}=92$ and $\mathrm{BPP}=0.97$ ) was the sister taxon to a clade of consisting of the buccinoid' families Nassariidae, Buccinidae, and Melongenidae) ( $\mathrm{bs}=95$ and $\mathrm{BPP}=0.95$ ).

## DISCUSSION

Morphology and Avatony: Although Tritonoharpa is similar to the Colubrariidae and other neogastropods in the morphology of its head-foot, pallial complex, reproductive and excretory systems, and extremely long, coiled proboscis, it differs in its foregut anatomy. Beu and Maxwell (1987: 7) reported the lack of a radula in T. antiquata based on the cxamination of two specimens (one result admittedly "inconclusive", due to the extreme fragmentation of the specimen). We have observed the presence of a radula in at least three specimens. It is
possible that Beu and Maxwell did not recognize a radula due to its extremely reduced size ( $<200 \mu \mathrm{~m}$ long). In some cancellariid species the radula may be present or absent (at different stages), as Oliver (1982) reported a radula only in the largest of two specimens of Nothoadmete tumida Oliver, 1982. The radula of Tritonoharpa has the typical nematoglossan structure, and is very similar to those of Plesiotriton vieus Habc and Okutani, 1981, and Africotriton crebriliratus (G. B. Sowerby III, 1903) (Beu and Maxwell, 1987, pls. 1 a-f and 13 a-d, respectively), comprising a single row of long, narrow, ribbon-like teeth. The peculiar tubular jaw surrounding the odontophore is typical of all Cancellariidae examined so far (Oliver, 1982; Harasewych and Petit, 1984, 1986; Simone and Birman, 2006) and may represent a synapomorphy of the Nematoglossa. Conceivably, the modification and reduction of the nematoglossan radula prompted the formation of protective javs (jw in Figures 9,15 ) around the median part of the odontophore (Figure 9, 15, od). This innovation was possibly induced by the nccessity to either (1) raise the thin and long radular teeth, improving operational efficiency, and/or (2) strengthen the tip of the proboscis, which may be useful for suctorial feedng.

Tritonolarpa antiquata has two pairs of salivary glands. The accessory salivary glands have the typical tubular structure and location as described for other cancellariids (Graham, 1966; Harascwych and Petit, 1982, 1984, 1986). The primary salivary glands are tubular and located in the body haemocoel rather than in the proboscis. Such a position is unusual in cancellariids: it may be explained by the large size of these glands in Tritonoharpa, or alternatively it may be a plesiomorphic feature of the neogastropods.

Tritonoliarpa antiquata has a large and well developed midgut gland located posterior to the nerve ring, which strongly resembles the gland of Leiblein of other neogastropods in its form and coloration. Although we have not detected any real duct connectig the gland to the esophagus, the only possible connection can be where the tissuc of the gland and the esophagus are in contact, i.e. in the anterior portion of the gland, still posterior to the nerve ring. The tissue of this gland appears less structured than in the gland of Leiblein of other neogastropods (e.g., Nucella lapillus, Andrews and Thorogood, 2005; A. Richter, personal communication), although it is known that the general appereance of the gland can be rclated to feeding habits and the physiolog-

[^0]


Figures 18-2 I: Shell and radula of Tritonoharpa antiquata. 18. Shell, off Tayud Is., Lilo-an (Cebu, Philippines) (photo courtesy, G. and P. Poppe). 19-21. Radula, Mactan (Philippines; BAU00269). Scale bars: 10 mm (18), $50 \mu \mathrm{~m}$ (19), $5 \mu \mathrm{~m}(20-21)$.
ical state of the specimens (Andrews and Thorogood, 2005; A. Riehter, personal eommunieation). Large globular cells of this gland, with large nuclei and multiple nucleoli and granules in the cytoplasm indicate ligh seeretion aetivity; the presence of vesieles filled with granules suggests an apocrine seeretion mechanism. While the diet of Tritonoharpa antiquata is unknown, it is likely that individuals in this species are suctorial, feeding on body fluids as do other cancellarioideans. This eonjecture is supported by the extreme modification of the radula, whieh suggests use for piereing rather than rasping (Oliver, 1982; Petit and Harasewyeh, 1986), by the tubular nature of the jaw, and by the large stomaeh resembling that of the haematophagous Colubrariidae (Ponder, 1968; Oliverio and Modiea, in press). Furthermore, haematophagy has been already reported for the eaneellariine Cancellaria cooperi Gabb, 1865 (O'Sullivan et al., 1957), while other caneellariid species have been observed feeding on bivalves (Trigonostoma scalariformis (Lamarck, 1822)), sand-dwelling gastropods (Trigonostoma scalata (Sowerby, 1832)) and, in aquarium, on fish pieces and squid eggs (Loch, 1957).


Figure 22: Maximum Parsimony topology oltained for the combined molecular dataset. Nimbers at nodes represent Bootstrap values ( 1000 replieates) in the mlysis of the 12 S , 16S, and combined datasets, respectively.

During several days of aquarimom observations (Santo 2006 expedition: MO, unpublished), two specimens of T. antiquata did not show any leeding activity in the presence of living specimens of various speeies of fishes.

The peeuliar long and spiratly convoluted valve of Leiblein, which differs from the pyriform valve of other Neogastropoda, has been also reported in Plesiotriton vivus (Kantor and Fedosov, 2009). Its functional significance deserves further investigation.
Pitylogeny: The MP analyses of each partition and of the combined dataset, produced highly implausible results, partieularly as the Rachiglossa, the Muricidae and the Buccinidae all emerged as polyphyletic (Figure 22), yet with a very few modes with strong bootstrap support. This was probably due to the inelusion in our dataset of some highly divergent sequences (e.g., Stramonita hacmastoma (Linnaeus, 1767), and Comus textile Limnaeus, 1758), a

Figures 9-17. Histology of Tritonoharpa antiquata, Santo Is. (Vamatu; BAU00302, female. 9. Cross-section of odontophore and radula. 10. Nerve ring. 11. Anterior part of the proboscis with buccal mass and salivary glands, stained with hematoxylin and eosin. 12. Cross-seetion through the posterior part of the proboscis with primary salivary ducts and nerves. 13. General view of the crosssection through the medial region of the last whorl of the animal. 14. Cross-seetion of the proboscis at the level of the oral tube and medial part of the midgut gland. 15. Anterior part of the proboscis with buceal mass and salivary glands, stained with alcian blue. 16. Cross-seetion of the proboscis with aceessory salivary glands and their ducts. 17. Longitudinal section through the posterior parts of the midgut gland and salivary glands. Abbreviations: asd, aceessory salivary duct; asg, aecessory salivary gland; $\mathbf{c m}$, columellar muscle; cml, eireular muscles; cot, comneetive tissue; crt, odontophoral cartilages; ct, ctenidium; cte, euticle; ep, epithelium; ft, foot; gl, gland of Leiblein; hg, hypobranchial gland: Im, longitudinal muscles; lw, lateral wings of the odointophoral cartilage; modr, middle part of the odontophoral eartilage; $\mathbf{n}$, nerves; $\mathbf{n r}$, nerve ring; oc, esophagus; ot, oral tube: pr, proboscis; $\mathbf{r}$, radula; sd, salivary duct; sg, salivary gland.


Figure 23: Partitioned Maximum Likelihood topology obtained for the molecular dataset. Numbers at nodes represent Bootstrap values/Bayesian Posterior Probability.
situation in which MP is expected to perform poorly ( Fel senstein, 1978; Kim, 1996; Holder and Lewis, 2003). Therefore, MP results will not be deseribed and diseussed in details.

The ML and BI phylogenetic analyses of the molecular datasets confirms Beu and Maxwell's plaeement of Tritonoharpa in the Cancellariidae within a plesiotritonine group. It also suggests that cancellariids could be the sister-group to other neogastropods, in agreement with neogastropod phylogenetic hypotheses based on anatomieal characters (Kantor, 1996, 2002; Strong, 2003) and larger molecular datasets (Oliverio and Modiea, in press).

The presence of a midgut gland resembling (and possibly homologous to) the neogastropod gland of Leiblein in Tritonoharpa raises some interesting questions on the evolution of the foregut. In fact, current hypotheses interpret the lack of separation between the midgut gland and esophagus in the cancellariids as indieating that the elongation site is the mid-esophagus. In the rachiglossams the elongation site is the anterior esophagus, causing the detachment of the glandular tissue from the oesophageal walls and the formation of the gland of Leiblein (Ponder, 1974). If further studies on the midgut gland of the Plesiotritoninae (e.g., biochemical charae-
terization of the seeretion, exaet loealization of the eonnection to the esophagus) will eonfirm its homology with the neogastropod gland of Leiblein, the possession of a separate gland should be considered as an apomorphy of the Neogastropoda (instead of only of rachiglossans + toxoglossans). It may thus not be the site of elongation of the esophagus that determined the formation of the gland of Leiblein. The presenee of glandular band of tissue, and not a separate gland, in other caneellariids (Harasewyeh and Petit, 1982; 1984; 1986) eould be eonsidered as a secondary reduetion. Alternatively, either the plesiotritonine midgut gland or the separate glandular tissue of other cancellariids may not be homologous to the true gland of Leiblein. The development of a eompensatory glandular region, has already been reported for other neogastropods, where it is assoeiated with a reduced or absent gland of Leblein (e.g., the glandular mid-posterior esophagus of Colubraridac: Ponder, 1968, 1973; Oliverio and Modiea, in press).

The buceal mass is displaeed posteriorly from the proboscis tip of cancollarioideans by the length of the oral tube. This condition does not correspond to a basal position (as in the toxoglossans), whieh has been hypothesized as the plesiomorphie state for the aneestral neogastropod


[^0]:    Figures 1-8. Anatomy of Tritonoharpa antiquata, Santo Is. (Vanuatu) and Aliguay Is. (Philippines). 1-3. External view of the soft body of a female (BAU00303, Vanuatu). 4. Head of a female (BAU00269, Philippines). 5. Anterior section of the proboscis of a female (BAU00301, Vanuatu), dissected dorsally. 6. Foregut anatomy of a female (BAU00268, Philippines). 7. Ilead-foot of a male (BAU00269, Philippines). 8. Mantle of a female (BAU00268, Philippines). Seale bar - 1 mm . Abbreviations: aoc, anterior esophagus; asd, aeeessory salivary duet; asg, aeeessory salivary gland; bh, body haemoeoel; bm, bueeal mass; cg, eapsule gland; $\mathbf{c m}$, eolumellar musele; ent, connective tissue; ct, ctenidium; $\mathbf{d g}$, digestive gland; e, eye; $\mathbf{f o}$, female orifice; $\mathbf{f t}$, foot; gl, gland of Leiblein; gon, gonad; hd, head; hg, hypobranchial gland; kd, kidney; m, mouth; mo, male orifice; n, nerves; nr, nerve ring; odr, odontophoral retraetors; oe, esophagus; os, osphradium; ot, oral tube; p, penis; poe, posterior esophagus; pr, proboseis: prr, proboscis retraetors; pw, proboscis wall; $\mathbf{r}$, radula; s, siphon; sd, salivary duct; sg, salivary gland; sn, snout; st, stomach; $\mathbf{t}$, tentacles; $\mathbf{v}$, valve of Leiblein.

